Table 2. Common multiplication and division situations.⁷ | | Unknown Product | Group Size Unknown
("How many in each group?"
Division) | Number of Groups Unknown
("How many groups?" Division) | |-------------------|---|---|--| | | 3 × 6 = ? | $3 \times ? = 18$, and $18 \div 3 = ?$ | ? × 6 = 18, and 18 ÷ 6 <i>=</i> ? | | Equal
Groups | There are 3 bags with 6 plums in each bag. How many plums are there in all? | If 18 plums are shared equally into 3 bags, then how many plums will be in each bag? | If 18 plums are to be packed 6 to a bag, then how many bags are needed? | | | Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether? | Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be? | Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have? | | Arrays,⁴
Area⁵ | There are 3 rows of apples
with 6 apples in each row. How
many apples are there? | If 18 apples are arranged into 3 equal rows, how many apples will be in each row? | If 18 apples are arranged into
equal rows of 6 apples, how
many rows will there be? | | | Area example. What is the area of a 3 cm by 6 cm rectangle? | Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it? | Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it? | | Compare | A blue hat costs \$6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost? | A red hat costs \$18 and that is 3 times as much as a blue hat costs. How much does a blue hat cost? | A red hat costs \$18 and a blue hat costs \$6. How many times as much does the red hat cost as the blue hat? | | | Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long? | Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first? | Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first? | | General | a × b = ? | $a \times ? = p$, and $p \div a = ?$ | $? \times b = p$, and $p \div b = ?$ | ⁴The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable. ⁵Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations. $^{^{7}}$ The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.